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Abstract. Using Skyrme energy density formalism, we present an analytical formula of ion-ion potential
(including spin-density part) in terms of the masses of colliding nuclei. The parametrization of the spin-
independent part of the ion-ion potential is based on the proximity theorem whereas the spin-dependent
potential is parametrized in terms of “the masses of colliding nuclei and their associated particle strength”.
The particle strength accounts for the number of valence particles outside the closed core. Adding Coulomb
interaction, this parametrization of ion-ion potential introduces a great simplification for the calculation
of fusion barriers and cross-sections analytically. Our parametrized potentials are in good agreement with
other theoretical potentials and the fusion cross-sections calculated with this potential are in good agree-
ment with experimental data.

PACS.

I Introduction

In last several years, lot of work has been done in low en-
ergy heavy ion physics. In this energy domain, the Skyrme
Energy Density Formalism (SEDF) has proven to be quite
successful in explaining the phenomena like interaction
barriers, fusion cross-sections, elastic scattering, nucleon
transfer processes, etc. [1-9]. The same Skyrme energy
density formalism is also used extensively for heavy ion
collisions at intermediate and relativistic energies [10−12].

One of the important questions at low energy is whether
we can understand the nucleus -nucleus potential in terms
of some fundamental quantities like masses and charges of
colliding nuclei or not. These quantities are always known
in any experiment and therefore, such parametrization
of the nucleus-nucleus potential can be of great impor-
tance for comparing the theoretical predictions directly
with experimental results. The present study deals with
a parametrization of the ion-ion interaction potential in
terms of some fundamental quantities like masses and
charges of colliding nuclei at low energy. In the past, sev-
eral successful attempts have been made to parametrize
the spin density-independent ion-ion potentials [2,7,8]. By
neglecting the spin-density part of the heavy ion potential,
one is reducing the scope of formalism to spin saturated
nuclei (like 16O, 40Ca etc.) only. On the other hand, we
know that the contribution of spin-density part towards
fusion cross-section can be as much as 50 mb [5]. There-
fore, an apparent need is to obtain a general analytical

formula of the potential for both the spin-saturated and
spin-unsaturated colliding nuclei.

The analyticity of the spin-saturated potential is guided
by the proximity concept and hence the parametrization
is straight forward. The proximity theorem states that the
interaction potential V = 2πR̄Φ(s), where Φ(s) is an uni-
versal function and R̄ is responsible for the geometry of
colliding nuclei. One can parametrize the Φ(s) uniquely
and hence the spin-saturated nuclear potential. On the
contrary, the parametrization of the spin-density depen-
dent part of the ion-ion potential is quite tedious. This
is because it involves the angular momenta and the in-
trinsic spins of nucleons. Furthermore, the magnitude of
shell model radial wave function depends strongly on the
orbital angular momentum. Therefore, one is left with no
other option but to parametrize the spin-density potential
of colliding nuclei belonging to the same shell, for both the
protons and neutrons.

In this paper, we present a complete parametrization
of the ion-ion interaction potential (including spin-density
part) in terms of masses and charges of colliding nuclei.
The present work is an extension of our earlier work [4], to
include collisions between all shells up to 0g and consider
another set of parameters for the Skyrme force. We also
compare our parametrized potentials with other theoret-
ical potentials. Some results of fusion cross-sections are
also given.

The article is organised as follows: Section II deals
with a brief outline of the energy density formalism. The
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analytical parametrization along with some results is pre-
sented in Sect. III and our results summarized in Sect.
IV .

II The model

The starting point of our model is the S kyrme E nergy
D ensity F unctional H(r). The volume integration of

energy density functional H(r) leads to energy expecta-
tion value [3] :

E =
∫
H(ρ, τ,J)dr. (1)

The interaction potential then reads as:

VN (R) = E(R)− E(∞)

=
∫

[H(ρ, τ,J)−H1(ρ1, τ1,J1)

−H(ρ2, τ2,J2)] dr. (2)

with ρ(= ρn + ρp), τ(= τn + τp) and J(= Jn + Jp), be-
ing the nucleon density, the kinetic energy density and the
spin density, respectively. Here indices n and p are the neu-
trons and protons, respectively. Under the sudden approx-
imation, we have ρ = ρ1 +ρ2, τ = τ1 +τ2, J = J1 +J2. In
other words, the interaction potential VN (R) is the differ-
ence of energy expectation value E of two colliding nuclei
at a finite distance R and at a completely separated dis-
tance (R =∞).
Following Vautherin and Brink [13], the energy density
functional H(r) is given by :

H(ρ, τ,J) = H(ρ, τ) +H(ρ,J)

=
{
h̄2

2m
τ +

1
2
t0[(1 +

1
2
x0)ρ2 − (x0 +

1
2

)(ρ2
n + ρ2

p)]

+
1
4

(t1 + t2)ρτ +
1
8

(t2 − t1)(ρnτn + ρpτp)

+
1
16

(t2 − 3t1)ρ∇2ρ

+
1
32

(3t1 + t2)(ρn∇2ρn + ρp∇2ρp) +
1
4
t3ρnρpρ

}
+
{
−1

2
W0(ρ∇ · J + ρn∇ · Jn + ρp∇ · Jp)

}
. (3)

In (3), the six parameters t0, x0, t1, t2, t3 and W0 are fit-
ted by different authors to obtain a better description of
the various ground-state properties of nuclei. Here we use
the Skyrme force SIII with t0 = −1128.75MeV fm3, t1 =
395MeV fm5, t2 = −95MeV fm5, t3 = 14000MeV fm6,
W0 = 120MeV fm5 and x0 = 0.45.

The kinetic energy density appearing in (3) can be
written as a function of nucleonic density, including the
von Weizsacker surface correction as : τ = 3

2 ( 3
2π

2)
2
3 ρ

5
3 +

λ (∇ρ)2

ρ . The value of constant λ has been a point of con-
troversy and hence in present calculations, we put λ = 0.

Now the energy density functional H(r) in (3) depends
on functions of ρ and J only and it is possible to sepa-
rate the interaction potential in to spin-independent and
spin-dependent parts:

VN (R) =
∫
{H(ρ)− [H1(ρ1) +H2(ρ2)]} dr

+
∫
{H(ρ,J)− [H1(ρ1,J1) +H2(ρ2,J2)]} dr

= VP (R) + VJ(R). (4)

Following [3,4,14], VP (R) can be calculated in the spirit
of proximity force theorem of [15],

VP (R) = 2πR̄Φ(s) = 2πR̄
∫
e(s)ds (5)

where

Φ(s) =
∫
{H(ρ)− [H1(ρ1) +H2(ρ2)]} dZ (6)

and

R̄ =
C1C2

C1 + C2
with Ci = Ri −

1
Ri

and Ri = 1.28A
1
3
i − 0.76 + 0.8A−

1
3

i .

The separation distance s = R − C1 − C2 and e(s) is the
interaction energy per unit area between two flat slabs of
semi-infinite nuclear matter with surfaces parallel to X-Y
plane and moving in Z-direction. Clearly

∫
e(s)ds in (5)

does not depend on the geometry of colliding nuclei and
hence is an universal function. For full details, we refer the
reader to original [3,14].

For nucleonic density, we use two parameter Fermi den-
sity:

ρi(ri) = ρ0i

[
1 + exp

(ri −R0i)
ai

]−1

, i = 1, 2. (7)

The values of constants ai, R0i and ρ0i can be found in ref.
[3]. The spin-dependent part of the interaction potential
reads as

VJ(R) = −3
4
W0

∫
[ρ2(∇ · J1) + ρ1(∇ · J2)] dr, (8)

where Vautherin and Brink [13] defines the spin-density J
as

Jq(r) = (−i)
∑
i,s,s′

φ∗i (r, s, q) [∇φi(r, s′, q)× < s|σ|s′ >] .

(9)
Here s and q represent the spin and isospin indices, re-
spectively and the summation i runs over all the occupied
single particle orbitals. For φi, an ansatz has been used
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φi(r, s, q) =
Rα(r)
r

∑
mlms

< l
1
2
mlms|jm >

Y mll (r̂)χms(s)χq(t), (10)

with α = q, n, l and the normalized shell model radial wave
functions

Rnl(r) = Cnlr
l+1e−νr

2
νnl(2νr2), (11)

with

Cnl =

[
[2l−n+2(2ν)l+

3
2 (2l + 2n+ 1)!!]√

π[(2l + 1)!!]2n!

]1/2

, (12)

νnl(x) =
n∑
k=0

(−1)k2k
[
n

k

]
(2l + 1)!!

(2l + 2k + 1)!!
xk, (13)

and

2ν =
41A−(1/3)mc2

h̄2c2
(in fm−2). (14)

For an even-even nucleus with valence particles (or
holes) outside (inside) the closed core, Puri et al. [3] di-
vided the Jq(r) into two parts ( for q = n or p )

Jq(r) = Jcq(r)± Jnvq (r). (15)

Here, the first term gives the contribution due to core con-
sisting of closed shells and the second term due to valence
nv particles (or holes) with (+) for particles and (−) for
holes. Jcq(r) and Jnvq (r) reads as:

Jcq(r) =
r

4πr4

∑
α

(2jα + 1)[
jα(jα + 1)− lα(lα + 1)− 3

4

]
R2
α(r) (16)

and

Jnvq (r) =
nvr

4πr4
[j(j + 1)− l(l + 1)− 3

4
]R2
l (r). (17)

Naturally, if core is a major-shell (i.e. orbits with j = l± 1
2

pairs fully occupied), the contribution of the spin density
part of the ion-ion potential will be zero. The nucleus-
nucleus potential calculated by using the above formalism
will be refered to as the ”exact” potential, in the follow-
ing.

III Analytical formulation of the heavy ion
interaction potential

Here we consider a large number of collisions involving
nuclei from different shells. We restrict ourselves to nuclei
belonging to the same shell. The colliding nuclei can be as

light as 12C+12C (0s-0p shells) and as heavy as 116Ce+116

Ce (0g − 0g shells). We first point out the limitations of
our model, which influence our parametrization.
(i). Both even and odd nuclei are involved in low energy
phenomena like fusion of colliding nuclei, particle transfer
reactions, cluster radioactive decay of nuclei, fission, etc.
However, SEDF is limited to even-even nuclei only.
(ii). The exotic cluster decay study involves the emission of
light nuclei such as α, 14C, 20O, etc. We know that in light
nuclei, the surfaces are comparable to their cores. There-
fore, the proximity concept (used in the present study)
becomes a poor approximation and hence we exclude the
0s-0p shells from our parameterization.
(iii). We know that for colliding nuclei, the depth of po-
tential pocket becomes shallower for heavier nuclei which
eventually disappears for very heavy nuclei. Therefore,
parametrization of the ion-ion interaction potential for nu-
clei belonging to shells like 0h 9

2
and higher, does not make

much sense. Hence in the present study, we parametrize
the ion-ion interaction potential for colliding nuclei be-
longing to (1s-0d), 0f, 1p, and 0g shells only. In other
words, our present parameterization is valid for the col-
liding nuclei with 8 ≤ Z ≤ 58.

In the following, we first discuss the analytical formula
for VP (the spin- independent part of the interaction po-
tential) and then give the details of how one can parame-
terize the spin- dependent part VJ of the interaction po-
tential.

A Analytical formulation of the universal function Φ(s).

From (5), it is clear that one can separate the proxim-
ity potential VP (R) into a product of universal function
Φ(s) (which is independent of the geometry of colliding
nuclei) and a geometrical factor (which depends on the
radii of colliding nuclei). We have calculated the universal

Table 1. Calculated values of Φ0 and s0 for some target-
projectile combinations using SIII λ = 0

System Φ0 s0 System Φ0 s0

(MeV
fm

) (fm) (MeV
fm

) (fm)

18O +36 Ar 2.267 0.3 18O +24 Mg 2.262 0.3
20Ne+30 Si 2.321 0.3 20Ne+34 S 2.315 0.3

22Ne+26 Mg 2.323 0.3 34S +32 S 2.318 0.3
34S +36 Ar 2.317 0.3 30Si+34 S 2.325 0.4

42Ca+64 Ge 2.312 0.2 42Ca+58 Ni 2.307 0.2
48Cr +62 Zn 2.310 0.2 48Cr +64 Ge 2.310 0.2
46T i+60 Zn 2.309 0.2 46T i+68 Se 2.310 0.2
54Fe+60 Zn 2.311 0.1 72Kr +74 Kr 2.304 0.2
70Se+70 Se 2.308 0.2 70Se+76 Sr 2.299 0.2
72Kr +80 Zr 2.307 0.3 74Kr +76 Sr 2.307 0.3
76Sr +76 Sr 2.308 0.3 78Sr +80 Zr 2.308 0.3

98Sn+102 Te 2.301 0.4 96Sn+92 Sn 2.304 0.4
88Mo+110 Ba 2.303 0.4 86Mo+84 Mo 2.306 0.3
92Pd+88 Pd 2.303 0.3 90Mo+90 Mo 2.303 0.3

106Xe+110 Ba 2.303 0.4 118Ce+122 Nd 2.301 0.4
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Fig. 1. Universal function Φ(s) as a function of distance s.
Different symbols represent exact universal function whereas
solid line is our parametrized form

function (eq. 6) for nearly 200 reactions. In Table 1, the
minimum values of Φ(s) (i.e. Φ0) along with its position
s0 are given for some 30 typical reactions. From Table 1,
one can conclude that for medium and heavy colliding nu-
clei, the Φ0 and s0 are nearly constant. This finding is the
same as has been reported in ref. [4] for another Skyrme
force and has been discussed by different authors [2, 7, 8].

The universal function Φ(s) for some of the colliding
nuclei is plotted in Fig 1 as a function of s. We find that
the scattering of different Φ(s) from a mean behaviour is
quite small. For (s ≤ s0), this scattering is larger, but this
part of the interaction potential has no physical impor-
tance. Firstly, the sudden approximation is not valid for
the overlaping regions and secondly, the measurable quan-
tities, like fusion barriers/cross-sections, occur at distance
R > Rtouching(= R1 + R2, Ri being the radii of collid-
ing nuclei). In this region of the interaction potential, the
scattering in Φ(s) is quite small. The general behaviour of
Φ(s) in Fig.1 can be parametrized as :

Φ(s) =
{
−Φ0 exp

[
−0.3325(s− s0)2

]
, for s ≥ s0,

−Φ0 + 1.90(s− s0)2, for s ≤ s0

}
,

(18)
with Φ0 = 2.27 ( MeV/fm) and s0 = 0.2 fm. In Fig. 1, this
parametrization is shown by a solid line. Similiar plots and
parameterizations have also been carried out in Refs. [2, 4,
7, 8]. The spin - independent ion-ion potential VP can be
obtained by multiplying Φ(s) with geometrical factor 2πR̄
of the colliding nuclei. Note that in parametrizing the uni-
versal function Φ(s), no restriction of the shells is imposed
on colliding pairs. In other words, this parametrization of
VP (R) is independent of the shell picture of the collid-
ing nuclei. The only restrictions imposed are (i) the nuclei
should not be too light (because the proximity theorem is

Fig. 2. The spin density potential VJ as a function of relative
separation distance R

better suited for medium and heavy nuclei only) and (ii)
the colliding partners should have even-even masses.

B Analytical formulation of the spin-dependent part
VJ of the potential.

In contrast to the proximity part of the interaction poten-
tial, we cannot split the spin-dependent part of potential
into a geometrical factor and an universal function. This
is because the spin density J(r), appearing in VJ (eq. 8),
depends on the radial wave function Rnl(r) which varies
from shell to shell [4]. The radial wave function is nearly
constant or varies smoothly within a shell. Therefore, we
have to restrict our parametrization of the spin density po-
tential to the colliding nuclei belonging to the same shell.
First such attempt was made by Puri and Gupta [4]. They
restricted themselves to (1s-0d) and (0f7/2 − 0f7/2) shells
only. Here, we parametrize the VJ for several shells (from
1s-0d to 0g) in terms of valence particles and masses of
colliding nuclei.

In Fig. 2, we show the spin density dependent part of
the ion-ion potential (symbols) as a function of separation
distance R for the collisions of nuclei belonging to 1s-0d,
0f, 1p and 0g shells. We find that the spin density part of
the potential behaves opposite to the proximity potential
(compare Figs. 1 and 2). As we are trying to parameterize
the potential within a shell, we assume that 0f and 1p
shells donot intermix with each other i.e. (0f 7

2
−0f 5

2
) shells

are filled first and then (1p 3
2
− 1p 1

2
) shells are filled. In

other words, we assume that the 0f 5
2

shell lies lower in the
energy than the 1p 3

2
shell, so that, (0f 7

2
−0f 5

2
) shell occurs

lower than (1p 3
2
−1p 1

2
) shell. Though this assumption can

be very crucial for the fine structure of many nuclei, but
we expect its effect to be small for our present study since
the contribution of spin density term is rather small.
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Table 2. Values of constants a, b and c in (21) and (22) for colliding nuclei belonging to differen shells

Colliding nuclei VJB RJB RJ0 RJL
(shells) c aJB bJB aJ0 bJ0 aJL bJL

0d+ 0d 1.5750 4.74 1.07× 10−3 3.68 8.87× 10−4 9.62 2.26× 10−3

0f + 0f 1.1333 6.19 3.22× 10−4 4.77 2.88× 10−4 10.63 8.29× 10−4

1p+ 1p 1.3920 5.51 1.51× 10−4 4.71 1.21× 10−4 11.66 2.93× 10−4

0g + 0g 0.8983 7.62 1.04× 10−4 5.96 8.29× 10−5 14.55 7.62× 10−5

Puri and Gupta [4] have characterized the spin density
potential by the following four points (shown in Fig. 2 for
one reaction):
(i) the height VJB of the repulsive maximum.
(ii) the position RJB of VJB .
(iii) the position RJ0 where the spin-density potential
changes its nature from repulsive to attractive and hence
becomes zero; and
(iv) the limiting distance RJL where VJ(R) goes to zero.
Following [4], we take VJL = 0.003 MeV for practical pur-
poses.
In terms of the above four points, we find that the spin-
density part of interaction potential for all nuclei can be
expressed analytically by the following simple formula :

VJ(R) =


VJB exp

[
ln VJLVJB

(
R−RJB
RJL−RJB

) 5
3
]
for R ≥ RJB

VJB − VJB
(

R−RJB
RJ0−RJB

)2

for R ≤ RJB .
(19)

with the parameterized expressions for four constants VJB ,
RJB , RJ0 and RJL obtained in a similar way as reported
in [4]. In ref. [4], the variation of VJB was found to be
smooth with a quantity called ”Particle-Strength”, which
is defined as

Ps =
∑
α

(2jα + 1)
4π

[
jα(jα + 1)− lα(lα + 1)− 3

4

]
±nv

4π

[
j(j + 1)− l(l + 1)− 3

4

]
. (20)

Similarly, all other quantities, measuring the distances
like RJB , RJ0 and RJL, are found to vary smoothly with
(A1 A2) i.e. with the product of the masses of the colliding
nuclei.
The maximum of the spin density potential, VJB , for all
the shells can be represented by

VJB = cPs, (21)

whereas RJB , RJ0 and RJL vary as straight lines:

Ri = ai + bi(A1 A2) (i = JB, J0, JL) (22)

The constants c, ai, bi for the colliding nuclei belonging
to (sd+sd), (0f+0f), (1p+1p) and (0g+0g) are listed in Ta-
ble 2. A comparison of the exact values of VJB , RJB , RJ0

Fig. 3. VJB as a function of ”Particle Strength” Ps

and RJL calculated from (8) with the analytical formulae
(eqs. (21,22)) are shown in Figs. 3 and 4. We find that
the exact values match the parameterized values quite
nicely. Furthermore, we also find that the slope of VJB ,
RJB , RJ0 and RJL decreases as we go to higher shells. In
addition, RJ0 can also be approximated for all shells by
RJ0 = (1.12± 0.05)A

1
3 .

This means that the spin-density potential changes its
sign from repulsion to attraction at a distance close to
the radius of the compound system (≈ 1.12 × A

1
3 ). A

comparison of exact ((8), symbols) and the parameter-
ized spin-density potential ((19), solid line) is also shown
in Fig. 2 . We find that our analytical expressions repro-
duce the exact spin density potential very accurately. In
most of the collisions reported here, the analytical and
the exact results are quite close. Hence, we can use (19-
22) to calculate the spin density part of the interaction
potential analytically. An application of (19-22) equations
is straight forward. Once we know the masses of colliding
nuclei, we can find VJB , RJB , RJ0 and RJL from (20-22)
and Table 2. These four parameters finally appear in (19)
to generate the spin density potential.
Then using (18) and (19), we can generate the ion-ion
interaction potential analytically. This simple parameteri-
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Fig. 4. The RJ0, RJB , and RJL as a function
of product of masses (A1 ·A2)

zation introduces great simplification to calculate the ion-
ion potential using Skyrme Energy Density Formalism. In
any heavy ion collision, the masses (and the charges) of
the colliding nuclei and the bombarding energy are the
inputs of an experiment. One can add the Coulomb in-
teraction (which depends upon the charges of colliding
nuclei) to compute the fusion barriers and cross-sections.
Our present attempt is a first complete parameterization
which includes the spin density distribution of colliding
nuclei and is based on a microscopic theory.

The test of the accuracy of our analytical potential is
made in Fig. 5. Here we compare our total potential with
other theoretical potentials taken from ref.[16]. We find
that our potential is very close to that of Krappe et at.
and proximity potential. The displayed part is the surface
part the ion-ion potential.

To compare and calculate the fusion cross-section, we
use sharp cut of model where the fusion cross-section is
defined as:

σ(Ec.m.) = πR2
B [1− VB/Ec.m.] . (23)

where RB and VB are the barrier position and height
[5]. Using our analytical ion ion potential in above for-
mula, we compute the fusion cross-section. In Fig. 6, we
show our calculated fusion cross-section for the collision
of 32S +27 Al. The experimental data and other theoreti-
cal results are taken from [16]. As SEDF is valid for even
even colliding nuclei, we show the results for 32S +28 Si
and 32S+26Mg. We find that our results are in very good
agreement with experimental data and also with theoret-
ical results of Krappe et. al, and proximity potental. It is
worth to mention that we have calculated the fusion cross-
section for several different reactions and our results are
in good agreement with existing experimental data. This
shows the validity of our analytical ion-ion potential.

IV Summary

We have presented a calculation of the heavy ion potential
using Skyrme energy density formalism. To parametrize
the ion-ion potential, several hundred collisions were gen-
erated involving (1s-0d) to 0g-shells. The spin-independent
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Fig. 5. The parametrized ion-ion potential along with other
theoretical potentials as a function of the saparation distance
R. The theoretical results of proximity potential, Double -
folding potential and Krappe-Nix-Sierk potential are taken
from [16]

Fig. 6. The Fusion cross-section as a function of the centre
of mass energy Ec.m.. Here our present results are shown for
the collisions of 32S +28 Si and 32S +26 Mg. The fusion cross-
sections using proximity potential and Krapp-Nix-Sierk poten-
tial are extracted from [16]

part of the ion-ion interaction potential is parameterized
in the spirit of proximity theorem and a simple analyti-
cal parameterization of spin-dependent part of the ion-ion
potential is presented in terms of the masses of colliding
nuclei and a quantity called particle strength. This analyt-
ical formulation introduces a great simplification for heavy
ion potentail calculations based on a microscopic picture.
The parametrized ion-ion potentail is in good agreement
with other theoretical potentials. The fusion cross-section
calculated with above analytical formulation is very close
to the available experimental data.

This work is supported in parts by Department of Science and
Technology, Govt. of India.
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